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Introduction

Many carrying or support systems have been used in high-technology
industries. In these systems, support or conveyance without contact with
supporting devices is a major problem. There are many ideas for the
supporting and carrying systems. Two types of supporting systems using air
flow have been proposed. One is to remove air from the device and the other is
to eject air from small slits or from a uniformly porous surface to generate
positive pressure on the surface. In the latter case, within the past few years,
many problems have been studied dealing directly with the fluid flow through
porous media. Examples of these are the cases of transpiration cooling,
boundary-layer control or sustentation.

To simulate conditions encountered in the suspension problem, the
configuration investigated here is that of a flow in the gap between an infinite
uniformly porous plate and a disk able to move in a direction perpendicular to
the porous surface.

With another configuration, Petit (1986) has shown effects of viscosity. The
sustentation of an air-cushion pad when air is blown out from an annular ring
is studied by Nakajima et al. (1995). An experimental investigation for the
pressure is presented by Crnojevic et al. (1995) if air is ejected through a circular
aperture.

The disk floats at the distance h above a porous surface. We treat the problem
as a steady, incompressible, axially symetrical flow and we limit our study to a
Reynolds number greater than 1.

Defining equations of sustentation
The dimensional velocity is expressed in r and z (here, the underline indicates a
dimensional quantity):

V = u.r + v.z (1)
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and we consider the case of a circular disk of radius R and a constant rate at the
porous wall in the form:

v(0y= 2.q @

If h is the stabilized dimensional height above the porous surface, the mean
peripherical velocity U is given by
h

Uh = Judz = Rg @)
0
The conservation equations for this two-dimensional axisymetric flow are
continuity

du u dy
— = + = =0 4)
dr r oz
r-momentum equation
du du dp u 1 du u  du
plu—+v. = = —-— + pj—+-—.—=-=+—=|(5
dr dz dr a2 ror 252
Z-momentum equation
v av dJp v 13y Py
p. u—+ v.— = -— + . —'—2+—.a—+—2
dr 0z oz o Lo 5

Scaling transformation is one of the most prominent transformations in fluid
flow problems. We first scale all the dependent and independent variables as
follows.

r=Rr 5 z=hz (7)
and
u=Uu ;3 v=24q9 8)

Unfortunately, we do not know which characteristic is able to scale the pressure.
Using the rate of blowing, we can write:

2
P = P-(p-g] 9)

Using this definition of non-dimensional pressure and equation (3) the
Z-momentum equation (6) becomes



—+2.00— =- - —+ —. — (10)
Jr 3z 2 9z hq art ror| g7t

2
30 R Lap, v |[a]]e®0 1av]| o0
R
In (10), two non-dimensional numbers appear:

(1) the Reynolds number h - g/v in which we find the rate of blowing at the
porous surface;

(2) adimensionless characteristic € defined as the ratio of the height h and
the radius R of the disk. In order for a support system to operate, € has
to be small.

We look for a solution of equation (10) which can eliminate the influence of €. In
this case this means that:

7’9 13
+ — —
J 2 raoar

= 0 (12)

which leads to a general solution
8 = Z(z).(Kl.Logr + Kz) (12)

A solution must be valid on the axis of symmetry (r = 0) and requires that this
component of velocity depends only on the variable z (K; = 0) so that:

9 = Z(2) (13)
With (13), continuity equation is reduced to:
dZ
du v _ 42 (14)
ar r dz

and a solution for the radial component of the velocity which can verify the
condition on the axis of symmetry and the boundary conditions is

dZ
dz
We have found with (13) and (15) that the two velocity components are
expressed in the form of a unique complementary function. This solution is
equivalent to a self-similar solution.

On the other hand, we can use the mean radial velocity U to scale the
pressure

2
p = p-(PE] (16)

w = -r. (15)
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Introducing (13), (15) and (16) in the two momentum equations (5) and (10), the
next equations appear as

2

AR Y 2 A AN g1 (17)
h.q roor
28
'ZZZ’ - L_Z“ = - l _Q_. _p (18)
h.q 21q) 9z

where a differentiation with respect to z of equation (17) and with respect to r of
equation (18) leads to the conclusion that the right hand side of equation (17) is
independent from the variable. Then, the term depending on the pressure on the
right hand side of (17) is a constant a. The value of this constant is given by the
value of the third derivative Z" on the disk:

y 23]
o = —.7Z (19)
1_1-3 z=1
We can now express the pressure in dimensional variables as:
2 : dZ
* o |r o Y
p-p = 2.pq . |-——1|~ -7+ —. 20
Pl 17 M n-g{dz] “

in which p” is a judicious constant of integration.
a can be eliminated by a differentiation of (17) with respect to z and the
problem of levitation of a disk is translated into

Eijz = 2.£.Z.(13—Z =Re.Z.d3—Z (1)
dz* v dz? dz’
with two conditions on the porous surface, namely
70) = 1 3 Z(@© = 0 (22)
On the upper side of the domain, the no-slip conditions give
Z()y = 0 3 Z() = 0 (23)

Quasilinearization method

The method used to find a solution of the non-linear differential equation (21) is
the “quasilinearization method” proposed by Radbill (1964). The method is
viewed as an extension of the Newton-Raphson method.



Linearization
Following Radbill (1964), equation (21) may be transformed into a linear
equation. With the notation
n-1
£ = d—z
dzn—l

and two successive solutions f and fk*1), a Newton’s development of (21)
around the previous solution gives

df(k+])

4 = Re | fk+D gl L gkt D) (k) _ (k) plk) (24)

(1<n<y

Integration scheme
Equation (24) is linear. Replacing the derivatives with five-points central
differences approximations:

m 1
Z - —q(— ck'z + 2gk_] - 2Ck+] +{;L+2) (25)
2.h
1338 l
z = _4'(Ck-2 - AL+ 64 - 48 +lia) g
h

After eliminating the points {_;, {, {y.; and {y,, with the boundary
conditions and using the approximation
’ 1
Z = —-[Ck-z - 8.y + 8.5, - Ck+2) 27)
12. 4

we get a pentadiagonal matrix for which the easiest method of inversion is the
Thomas’ algorithm (Salvadori and Baron, 1961). A Richardson extrapolation
has been used to improve the accuracy of the calculation.

“TRIO”
The CEA is continually involved in the design fluid flow problems involving
heat and mass transfers (Gauvain; Magnaud et al., 1987). With the aim of
solving such problems, a family of computer programs has been under
development. TRIO is the newest one in the suite of programs called CASTEM
2000. It has been used for many industrial problems as we can see in Gauvain.
TRIO was used to validate the present numerical solution found with the
quasilinearization scheme. A moderately fine mesh of 39 x 26 rectangular
elements was used for all the simulations. The grid was made fine close to axis
of symmetry and to the disk, coarser near the porous wall and greater and
greater with the distance r.
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Figure 1.
Convergence for Z' for
Re = 100 — white dots
represent the second
iteration and the full
line the final solution

Asymptotic expansion

For low Reynolds, following an idea of Hinch (Hinch and Lemaitre, 1994), we
propose the asymptotic polynomial formulation useful for initialization of our
scheme.

Z = Yo + Re. v, (28)
with
v = 1 -322+25° (29)
and
¥, = i(zzzz .52 43524 .70 4 237) (30)
35
With (28), we can evaluate the reduced wall shear stress on the disk with
» 26.R
Z'(1) = 6. d (31)
35

Results and discussion

Convergence

Figure 1 represents a typical case of our calculation. We have used the function¥,
only (29) to initiate the calculation so as to demonstrate the rate of convergence
of our scheme in the case of Re = 100. The second iteration is very close to the
final solution. Typically seven iterations are necessary to reach convergence for
each run performed, starting from initial conditions. This number is reduced if
the computation is started from the stored solution of a parametrically related
previous solution. The convergence of a run is tested on the next quantity (N
represents the number of the points of the mesh) which must be less than 1076

} N (32)

N
en(f) = Z {

j=1

fi“”(cj)‘ :

SRSy
n

-7’

Initialization




Characteristics of the flow

No particular convergence problems were encountered and the residual errors
diminished monotically in all the cases presented here. Figures 2-5 represent the
conditions on the others boundaries up to Re = 100.

An internal procedure of derivation is used in TRIO to obtain Z"(1). It should
be remembered that this parameter Z”(1) describes the dimensionless wall shear
stress on the disk. The differences between TRIO (except on borders between
sub-domains of the mesh) and quasililinearization are negligible.

The two Figures 4 and 5 represent the third derivative of Z. This parameter
describes the pressure parameter a (19). We observe that Z2’(0) is rapidly equal

40* Zn (1)
30—

20

10
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Figure 2.
Second derivative of Z
on the disk

Figure 3.
Second derivative of Z
on the porous plate
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Figure 4.
The third derivative of
Z on the porous wall

Figure 5.
The third derivative of
Z on the disk

27

Re

2727
(/100)

\ \ \ \ \ |
0 100 200 300 400 500 600

to 0. This parameter may be calculated in two manners using equation (17) and
the two sets of conditions (22) or (23):

vV $33

Z
33
=0 (33)

o= 1.7 = - 227+
hg z=1. h

[l

The difference between the two formulations of a is negligible. For example, for
Re = 50, we obtain 4.5164 (z = 0) and 4.5226 on the disk. At Re = 500, this
relative difference is less than 0.3 per cent. Using equation (17), we can verify
that the non-dimensional pressure gradient is nearly constant all over the
domain.



Figure 6 compares Z and Z' (the non dimensional velocity componentsu and A viscous steady

) for Re = 2,

We note that the horizontal component has a nearly parabolic profile and that
we cannot see any difference between our results and the approximation given
by equation (29). So we have demonstrated that (28) is a useful tool for the
initialization of our numerical scheme.

In Figure 7, in which a is plotted against the radius, TRIO gives some
inaccurate results at points located at abscissa 1, 2, 4, 8 owing to the step
changes in mesh size of our mesh. Near the axis of symmetry, for r < 1, the
pressure parameter given by TRIO (the pressure is recovered from the Navier-
Stokes equations with the velocity and, next, derivated) is not constant and
differs significantly from our result. The reasons for these differences are:

e the pressure in one element is recovered from the Navier-Stokes
equations with the node values of the velocity;

« the node values of the pressure are extrapolated from the value in an
element and, thereafter, derived;

* we cannot stipulate all the conditions on the axis of symmetry; we have
used only a Dirichlet condition on this frontier.

27

) Key

present solution
asymptotic form
0 o °© TRIO

laminar flow

177

Figure 6.

Profiles of the
components of velocity
— comparison between
our numerical results
and formula (29)
—Re=2

Figure 7.

Comparison between
our numerical results
and TRIO for the
pressure parameter a —
Re =50
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Figure 8.

Comparison between
our numerical results
and TRIO for the
dimensionless wall
shear stress on the disk
for different values of
Re

Table I.

The reduced wall shear
stress Z"(1), comparison
between the present
results and asymptotic
formulae

In Figure 7, we can compare our constant numerical value and a second value
deduced from (34). This asymptotic expression gives a value lower than our
numerical value. The reason for this difference proceeds from the method
giving the asymptotic solution. The parameters in (34) are the consequence of a
numerical estimation of a displacement thickness. In case of an internal flow,
the method generates a loss in the determination of a and the reduced wall
shear stress.

The same remarks concerning results obtained with TRIO are also valid for
Figure 8 which represents the reduced wall shear stress on the disk for several
values of Re (1, 5, 15, 25).

Comparison with Hinch’s results

We can find in Hinch and Lemaitre (1994), two asymptotic solutions: one for low
and the other for high Reynolds numbers supported by some experimental
results. Table | compares the reduced wall shear stress on the disk obtained
from the asymptotic expansion of Re (valid for Re > 10)

Z (1) = 3,711 VY Re

with our numerical results.

We see an excellent agreement for low Reynolds numbers and our numerical
results are always greater than those obtained with equation (33) for high
Reynolds numbers. This remark is also valid in Hinch and Lemaitre (1994)
where we can read that “... the high Reynolds number solution is not so
accurate until quite large values of the Reynolds number”. The reason for this
difference is seen in Hinch and Lemaitre (1994) where the final solution is found

(34)

257 Zn (l)
207 O [a] a (25) .
S o o (15)
15— - o
o]
10— F:mﬂm-un—n—n—c L r ©) 0 H
Siow (1)
r
0 T T T \
0 2 4 6 8
Re Equation (31) 1.0 5.0 Equation (33) 15.00 25.0 50.0
Hinch 6.743 9.715 14373 18555 26.241
Present solution 6.768 9.875 15593 19701 27331




after fitting on a particular point a numerical calculation inside the boundary A viscous steady

layer with an asymptotic solution outside.
Another comparison can be made with Hinch’s asymptotic formulation

3,219

\/Riez (35)

Four experimental results (Re = 10, 15, 22.5, 38) (Hinch and Lemaitre (1994)
draw attention to the difficulty of measuring the exact distance h for a low Re)
are compared with our numerical results in Figure 9. The error bars on the
experimental results were estimated from results given in Hinch and Lemaitre
(1994). With a possible experimental measure error of this height, there is an
excellent agreement between all the results.

4.0 +

o =

High Re

Our numerical scheme using quasilinearization is able to predict the profiles of
the velocity to a Reynolds number greater than 500. Table Il gives our
numerical results up to Re = 550 for the non dimensional wall shear stress on
the two surfaces. These results show that the derivative tends asymptotically to
a value of 2 as Re increases and is approximately equal to the next expression
(as soon as the third derivative Z™(0) is sufficiently small: i.e. Re > 15 (Desseaux
and Debaillon))

laminar flow
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Figure 9.
Comparison between
our numerical results

(full line), experimental

values (E) and an

asymptotic solution (A)

(Hinch and Lemaitre,
1994) for the pressure
parameter o

a

67

57

(E)
(A) Re
4 \ \ \ \ |
5 15 25 35 45 55

Re ~27(0) 2(1) Re -27(0) Z(1)
100 2.175 38.191 150 2.141 46.507
200 2121 53.547 250 2.107 59.756
300 2.097 65.373 350 2.090 70.543
400 2.084 75.357 450 2.079 79.882
500 2.074 84.165 550 2.071

Table Il1.
Numerical solution for
high Re — the second

88.240 derivative on both sides
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Figure 10.
Comparison for our
numerical results
between some profiles
of the vertical
component of the
velocity — Re = 10; 50;
500

Figure 11.
Comparison for our
numerical results
between some profiles
of the radial component
of the velocity — Re =
10; 50; 500

~Z7(0) = 2. + 2.339 Re033% (36)

and the dimensionless wall shear stress on the non-porous disk is
approximatively equal to:

7' (1) = 4.174 Re"452 (37)

Expressions (35) and (36) inferred by our numerical results are more accurate
than an asymptotic development based on the square root of Reynolds number
because the determination of the asymptotic solution is limited to the first order
of the perturbation parameter.

Figure 10 presents three different illustrations for the vertical velocity. For Re
greater than 50, the profiles of the vertical velocity are close to each other and
this is the reason for not calculating beyond Re > 500.

More interesting are the results presented in Figure 11. We can observe the
development of the horizontal velocity with the Reynolds number and as the Re

1,0~
0,8
0,6
0,4

0,2

0,0

0,0 0,2 0.4

(50)

(10) (500)

0,0 0,2 0,4 0,6 0,8 Z 10



grows, we see the reduction of the boundary-layer thickness on the disk. For a A viscous steady

Re less than 10, the profile of this component is nearly parabolic and can be
found using only the lubrification theory (Schlichting, 1968).

Estimation of h.
The integration of equation (20) using the vertical balance of the forces acting
on the disk gives an estimate for the height at which the disk floats, h as soon
as the mass M of the disk is known:
2
R oapm
h = 1 P (38)
2 Mg

For a practical application of the lift of a disk with any load, it is convenient to
use the second evaluation (33) for a. The third derivative of Z on the porous
surface is rapidly equal to 0. Then, it becomes, with (35)

2
h = \jl. + 117 R0 g R /ﬁ (39)
1 \ Mg

Conclusion

A self-similar solution for the velocity transforms the problem of a disk
suspended above a porous surface transformed to a fourth order ordinary non-
linear differential equation. Using a quasililearization scheme and replacing the
derivatives by five-point central difference approximations, we obtain a system
of algebraic equations easy to solve. The numerical results are in very good
agreement with those obtained with the use of a general computer program and
with experimental results. Our numerical results can predict the height at which
a disk floats if we assume that the flow of the fluid across the porous plate is
independent of the radial distance under the disk, i.e. that the pressure
distribution under the disk is never affected by the geometry.
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